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Abstract In this paper, we study cyclic edge-cuts in fullerene graphs. First, we show
that the cyclic edge-cuts of a fullerene graph can be constructed from its trivial cyclic
5- and 6-edge-cuts using three basic operations. This result immediatelly implies the
fact that fullerene graphs are cyclically 5-edge-connected. Next, we characterize a
class of nanotubes as the only fullerene graphs with non-trivial cyclic 5-edge-cuts.
A similar result is also given for cyclic 6-edge-cuts of fullerene graphs.
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1 Introduction

Since the discovery of the first fullerene molecule [9] in 1985, the fullerenes have been
the objects of interest of scientists all over the world. The name fullerenes was given to
cubic carbon molecules in which the atoms are arranged on a sphere in pentagons and
hexagons. A useful and comprehensive overview of the actual development is the book
of Fowler and Manolopoulos [6], where the authors bring results from several different
topics in mathematics and chemistry concerning fullerenes and their structure.

Many properties of fullerene molecules can be studied using mathematical tools.
Thus, mathematicians adopted the notion of fullerenes and defined the fullerene graphs
as the plane cubic 3-connected graphs with only pentagonal and hexagonal faces.
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Various structural properties of fullerene graphs have been studied. See the papers
[1,2,4,8,13] for results on perfect matchings i.e. Kekulé structures of fullerenes. In
[7] the independence number of fullerenes is studied. One of the central questions
remains hamiltonicity of this class of graphs. See [10] for a list of open problems on
fullerene graphs.

Similar problems are studied also for the nanotubes. Nanotubes are members of
the fullerene structural family. They are cylindrical in shape, with the ends typically
capped with a hemisphere of the fullerene structure. See [11] for results on the number
of Kekulé structures in nanotubes. Nanotubes with the ends left open (open-ended
nanotubes) are also interesting objects, see e.g. [12].

Dosli¢ proved that fullerene graphs are cyclically 4-edge connected [2] and cycli-
cally 5-edge connected [3]. The cyclic edge-connectivity of a fullerene graph cannot
exceed 5, since it contains 12 pentagons, thus, there are at least 12 cyclic 5-edge-
cuts—formed by the edges pointing outwards of each pentagonal face. There are also
cyclic 6-edge-cuts formed by the edges pointing outwards of each hexagonal face.
These cyclic 5- and 6-edge-cuts will be called trivial.

Regarding the edge-cuts, there are some natural questions to ask: Are the 12 trivial
cyclic 5-edge-cuts the only cyclic 5-edge-cuts in the fullerene graphs? Or, there are
fullerenes with more than 12 cyclic 5-edge-cuts! Similar questions can be posed for
the cyclic edge-cuts of bigger size.

In this paper, we study cyclic edge-cuts in fullerene graphs. First, as an auxiliary
result, we show that the cyclic edge-cuts of a fullerene graph can be constructed
from its trivial cyclic 5- and 6-edge-cuts using three basic operations. This result
immediatelly implies the fact that fullerene graphs are cyclically 5-edge-connected.
Similar technique is used in [5] to characterize boundary sequences in fullerene-like
structures. Next, we characterize a class of nanotubes as the only fullerene graphs with
non-trivial cyclic 5-edge-cuts. A similar result is also given for cyclic 6-edge-cuts of
fullerene graphs.

An edge-cut of a graph G is a set of edges C C E(G) such that G — C is disconnec-
ted. A graph G is k-edge-connected if G cannot be separated into two components by
removing less than k edges. An edge-cut C of a graph G is cyclic if each component of
G — C has acycle. A graph G is cyclically k-edge-connected if G cannot be separated
into two components, each containing a cycle, by removing less than k edges.

A graph drawn in the plane such that the edges are not crossing is a plane graph. A
plane graph has one infinite face, called the outer face. All other faces are finite, and
they are called inner faces.

2 Generating the cyclic edge-cuts

In this section, we introduce three operations to construct all cyclic edge-cuts of a
fullerene graph from the trivial ones. These operations are used in the study of cyclic
5- and 6-edge-cuts in the next sections. In the figures of this paper, the edges of the
edge-cuts are marked by dotted lines passing through them. The pentagonal faces are
usually in the figures filled with grey color.
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Let G be a fullerene graph and C C E(G) be a cyclic k-edge-cut. If we remove the
edges of C the graph G splits into two components, each containing a cycle. Because
there are twelve pentagons in G, at least one of the two components contains at most
six pentagons. Denote this component by H. The vertices of degree one and two in
H are precisely the endvertices of the cut edges, thus they are all incident with the
outer face O of H. We use the following simple property of the edge-cuts in fullerene
graphs:

Lemma 1 Let C be an edge-cut in a fullerene graph G. Suppose that a component H
of G — C does not contain any vertices of degree one. Let ny be the number of vertices
of degree two, fs the number of pentagons, and [ the size of the outer face of H. Then,

6— fs =2ny — 1.

Proof Let m be the number of edges, n3 the number of vertices of degree three, and
fe the numbers of hexagons of H. Then, obviously

2ny +3n3 = 2m = 5f5+ 66+ 1.
On the other hand, by Euler’s formula, we have
n+n+fs+ fe+1—m—-2=0.
Hence,
(4ny +6n3 —4m)+ Sfs+6fc+1—2m)+2n2+ fs —1 —6=0,
which finally implies that
6— fs=2ny —1.

O

Now, we present the three operations. Each of the operations (O;) modifies the
cyclic k-edge-cut C into another cyclic edge-cut C;. Moreover, G — C; contains a
component H; which is a proper subgraph of H. Let n denote the number of vertices
of H.

(0O1) Suppose that v is a vertex of degree one in H. Then, exactly two edges incident
with v (in G) belong to the cut C, say e and e. Let the third edge incident with
v be e3. Then, obviously C1 = C \ {e1, e2} U {e3} is a cyclic (k — 1)-edge-cut
in G with a component H; = H — v on n — 1 vertices having at most six
pentagonal faces. See Fig. 1 for illustration.

(0O2) Suppose that H contains at least two inner faces and that v; and v, are two
adjacent vertices of degree two in H. Let e be the edge viv, and ¢; € C,
e; ¢ C the other two edges incident with v;, i = 1, 2, see Fig. 2. Then C, =
C\{e1, e2}U{e], €} } is ak-edge-cut in G with a component H, = H —v; — v
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€1 €9

Fig. 1 If a component H contains a vertex of degree one, then using (O1) one can modify the k-edge-cut
C into a (k — 1)-edge-cut Cy

Fig. 2 If a component H contains two adjacent vertices of degree two, then using using (O2) one can
modify the k-edge-cut C into a k-edge-cut Cp

C

Cs

H Hj3

Fig. 3 If the vertices of the outer face of H are consequently of degree 2 and 3, then using (O3) one can
modify the k-edge-cut C into a k-edge-cut C3

on n—2 vertices having at most six pentagonal faces. Notice that the assumption
of the number of inner faces of H assures that C; is a cyclic edge-cut.

(03) Suppose that the outer face O is of size 2k with k 2-vertices and k 3-vertices
alternating on O. Each of the 3-vertices on O is incident with exactly one edge
that is not on O.

We claim that C3 is a k-edge-cut. See Fig. 3 for illustration. Let vy, va, ..., vk
be the vertices of degree three on O in a cyclic order. If some v; and v;4
(where vr41 = v1) were adjacent, there would be a triangular face, what is not
possible. If v; and v; (j > i + 1) were adjacent, then also v; 1 and v;_; would
be adjacent, otherwise there would be a face of size at least seven. But then
also v; 1 and v;_» would be adjacent, etc., and after finitely many such steps
we get a face of size 3 or 2, what is impossible. Therefore, each v; is adjacent
to a vertex not on O.

Now we prove that C3 is a cyclic edge-cut. Suppose that the graph H3 obtained
from H by removing the vertices incident with O contains a vertex w of degree
at most one in H3. Then, w is linked to at least two vertices on O, say v; and
vj,i < j.If j =i+ 1, then there would be a face of size four. On the other
hand, if j > i + 1, then there would be a face of size at least eight. Altogether,
we conclude that H3 is of minimum degree two, hence, it contains a cycle.

Notice, that if C is a trivial cyclic edge-cut and the component H is a cycle on 5 or
6 vertices, then the operations (Op), (O>), and (O3) cannot be applied.
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Lemma 2 Let C be a non-trivial cyclic k-edge-cut in a fullerene graph G, and let
H be a component of G — C which contains at most six pentagons. Then, one of the
operations (01), (03), and (03) can be applied to get another cyclic edge-cut C*
with a component H* of G — C* such that it is a proper subgraph of H.

Proof If the component H contains a vertex of degree one, then the operation (O1)
can be easily applied, and we are done. Thus, in what follows, we assume that H is
of minimum degree two.

Notice that H has at least two inner faces; otherwise we infer that H is a trivial
cyclic 5- or 6-edge-cut, which is excluded by the assumption of the lemma. Now, if H
contains two adjacent vertices of degree two, then the operation (O>) can be applied
to obtain a new edge-cut that satisfies the requirements of the lemma.

Suppose now that there are no vertices of degree two adjacentin H. Lemma 1 gives
us the equality

where fs is the number of pentagons in H, nj is the number of 2-vertices, and [ is the
size of the outer face O. Because of the choise of the component H, itholds 6— f5 > 0.
On the other hand, since there is at least one vertex of degree three between each two
vertices of degree two on O, we have 2ny —[ < 0. Therefore, we conclude that fs = 6
and [ = 2ny = 2k. Hence, there are k 2-vertices and k 3-vertices alternating on O, so
the operation (O3) can be applied. ]

Theorem 1 The cyclic edge-cuts of a fullerene graph can be constructed from the
trivial ones using the reverse operations of (01), (02), and (O3).

Proof Let C be a cyclic edge-cut in a fullerene graph G. If C is not trivial, we apply
Lemma 2. As the number of vertices of the component H is decreasing, after finitely
many reverse operations of (O1), (O2), (O3) we obtain a trivial cyclic edge-cut. Now,
reversing this sequence of operations, one infers C. ]

3 Cyclic edge-cuts in nanotubes

Consider the fullerene graphs and the cyclic edge-cuts in them. The number of penta-
gons in the components of G — C may vary. If one of the components contains less
than six pentagons, then the other component can be arbitrarily large. On the other
hand, if both components contain at most six pentagons, we can apply the operations
introduced in the previous section to both of them.

A cyclic edge-cut C of a fullerene graph G is non-degenerate if both components
of G — C contain precisely six pentagons. Otherwise, C is degenerate. Obviously, the
trivial cyclic edge-cuts are degenerate.

There is a family of fullerene graphs, which have many non-degenerate cyclic
edge-cuts—the nanotubes. Nanotubes are cylindrical in shape, with the ends typically
capped with a hemisphere-like structure. The cylindrical part of the nanotube can be
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m p1ay1 + p2as

Fig.4 An example of a nanotube of type (6, 2) and a cyclic edge-cut C = {eq, €3, e3, ...} cutting through
the hexagons k1, hp, h3,...init

obtained from a planar hexagonal grid by identifying objects lying on two parallel
lines. The way the grid is wrapped is represented by a pair of indices (pi, p2). The
numbers p; and p; denote the coefficients of the linear combination of the unit vectors
a1 and a, such that the vector p1a; + paan joins pairs of identified points, see Fig. 4.
The following result is perhaps known, but for sake of completness, we include it:

Lemma 3 There are precisely six pentagons in each of the two caps of a nanotube.

Proof Let G be a nanotube of type (pi, p2) and let p = p; + p2. Then, inside the
cylindrical part of G, we can find a cyclic sequence of p hexagons (hy, ha, ..., hp)
such that h; and h;4 are adjacent (where h,41 = hp). Moreover, if we identify
each hexagon with its central point, then the vector h;4| — h; is either a; or a,
i=1,..., p.Lete; be the edge incident with both /; and A;1,i = 1, ..., p. Then,
C = {e1, ..., ep} is a non-degenerate cyclic p-edge-cut in G. It is easy to see that
the length of the outer face of both components H; and H> of G — C is equal, since
the one is the translation of the other for a vector ap — ap. In this translation, the
2-vertices on the outer face of H; correspond to the 3-vertices on the outer face of
H» and vice-versa. On the other hand, the number of 2-vertices on both of them is p,
thus, the same is the number of 3-vertices. Now, for both components in the equation
given by Lemma 1

6— f5 =2ny—1
we have 2k — (k + k) = 0 on the right side, thus the number f5 of pentagons is six in

both H; and H>. O

Notice that the nanotubes are not the only fullerene graphs having non-degenerate
cyclic edge-cuts. The fullerene graph depicted in Fig. 5 has precisely one non-
degenerate cyclic edge-cut, and obviously it is not a nanotube, since it needs more
than two unit vectors to traverse the hexagons around.
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Fig. 5 An example of a fullerene graph with non-degenerate cyclic edge-cut, which is not a nanotube

4 Cyclic 5-edge-cuts

In this short section, we consider the cyclic 5-edge-cuts. Notice that Theorem 1 gives
immediately the following facts:

Corollary 1 Every fullerene graph is cyclically 5-edge-connected.

Proof Since the size of the cyclic edge-cuts does not increase while using the opera-

tions (O1), (02), and (03), the size of the cyclic edge-cut cannot be smaller than the

size of the trivial ones, therefore, there are no cyclic edge-cuts of size less than five.
|

Corollary 2 There are no nanotubes of types (p1, p2) with p1 + p2 < 4.

Proof Each nanotube of type (p1, p2) contains a cyclic (p; + p»2)-edge-cut. Thus,
p1+p2=5. U

Another easy application of the Theorem 1 is the characterization of fullerene
graphs with non-trivial cyclic 5-edge cuts.

Let G denote the fullerene graph with the structure that two caps formed of six
pentagons are joined by k layers of hexagons, see Fig. 6. Notice that for k > 1 these
graph are nanotubes of type (5, 0). Also notice that the graph Gy is isomorphic to
the dodecahedron. It is easy to see that the graph Gy has precisely k non-trivial non-
degenerate cyclic 5-edge cuts.

Theorem 2 A fullerene graph has non-trivial cyclic 5-edge-cuts if and only if it is
isomorphic to the graph Gy, for some integer k > 1.

Proof As follows from Theorem 1, for each non-trivial cyclic 5-edge-cut there is a
finite sequence of operations which yields a trivial edge-cut. Since there are no cyclic
4-edge-cuts, there cannot be any operation (O1) in the sequence.

Let us reconstruct the original edge-cut. We start with a pentagon, the only trivial
cyclic 5-edge-cut. If the operation (O2) was used, there would be a quadrangular face.
So the operation (O3) has to be used, and hence a configuration of six pentagons is
obtained, see Fig. 7.

In the next steps the operation (O;) cannot be used again, because there would be
more than six pentagons in the component inside the cut, so the only possible operation
is (03). Therefore, for all non-trivial cyclic 5-edge-cuts C in a fullerene graph G one
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Fig. 6 The graphs Gy are the only fullerene graphs with non-trivial cyclic 5-edge-cuts

(O3)

«— etc.

Fig. 7 The only possible way to reconstruct a cyclic 5-edge-cut

of the components of G — C has the following structure: it contains a configuration
of six pentagons then surrounded by certain number of rings each contanining five
hexagons. Moreover, since the cut is non-trivial, the other component cannot be a
pentagon only, thus it also has the structure described above. Altogether, the fullerene
graph G is isomorphic to G for some k > 1. ]

Corollary 3 Allnon-trivial cyclic 5-edge-cuts in fullerene graphs are non-degenerate.

Proof By Theorem 2, the graphs Gy are the only fullerene graphs with non-trivial
cyclic 5-egde-cuts and all non-trivial cyclic 5-edge-cuts of the graphs Gy are non-
degenerate. ]

Corollary 4 The graphs Gk, k > 1, are the only nanotubes of type (p1, p2) with
pr+p2=5.

Proof The claim easily follows from Theorem 2 and the fact that each nanotube of
type (p1, p2) has a non-degenerate (p; + p2)-edge-cut. ]
5 Cyclic 6-edge-cuts

Unlike the non-trivial cyclic 5-edge-cuts, not all the non-trivial cyclic 6-edge-cuts of

fullerene graphs are non-degenerate. In Fig. 8, a sequence of six degenerate cyclic
6-edge-cuts is depicted.
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Fig. 8 Degenerate cyclic 6-edge-cuts that can be reconstructed from a pentagon

Fig. 9 The nanotubes of types (6, 0) and (5, 1) with examples of cyclic 6-edge-cut in both of them

Theorem 3 There are precisely seven non-isomorphic graphs that can be obtained as
components of degenerate cyclic 6-edge-cuts with less than six pentagons. Moreover,
the graphs with i pentagons are unique fori =0,1,...,4.

Proof By Theorem 1 each degenerate cyclic 6-edge-cut can be reconstructed from a
trivial one.

If we start with a trivial cyclic 6-edge-cut, which is degenerate, then the operation
(01) yields a cyclic 7-edge-cut, the operation (O3) creates a quadrangular face, and
the operation (O3) gives a configuration containing six pentagons.

Let us start with a pentagon. To avoid creating cyclic 7-edge-cuts, quadrangular
faces, or too many pentagons, we can only use the operation (O1) once and then the
operation (O») several times, see Fig. 8. More precisely, we can use (O») consequently
at most five times. Using (O2) once more yields a configuration of six pentagons. This
way we get all non-trivial degenerate cyclic 6-edge-cuts. ]

In the sequel, we deal with non-degenerate cyclic 6-edge-cuts. In Figs. 9 and 10, the
nanotubes of the types (p1, p2) with p; + p> = 6 with examples of non-degenerate
cyclic 6-edge-cut in them are depicted.

Nanotubes end with caps, each containing six pentagons. For the nanotubes of type
(5, 0) there is only such cap possible, see Fig. 7. How can the caps of nanotubes of the
types (p1, p2) with p; 4 p2> = 61ook like? Is there at least one cap possible for all four
types of nanotubes? The answers are consequences of the following characterization:

Theorem 4 A fullerene graph has a non-degenerate cyclic 6-edge-cut if and only if it
a nanotube of type (p1, p2) with p1 + p2 = 6, or it is a nanotube of type (5, 0) with
at least two layers of hexagons.
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Fig. 10 The nanotubes of types (4, 2) and (3, 3) with examples of cyclic 6-edge-cuts in them

(O3)
«— (6,0)

Fig. 11 The cyclic 6-edge-cuts reconstructed from a hexagon

Fig. 12 The cyclic 6-edge-cuts reconstructed from a non-trivial cyclic 5-edge-cut

Proof 1t is easy to see that all the nanotubes of type (p1, p2) with p; + p» = 6 have
non-degenerate cyclic 6-edge-cuts, e.g. those illustrated in Figs. 9 and 10. Notice that
the nanotube G of type (5, 0) has only one non-degenerate cyclic edge-cut of size
five. The nanotubes Gy, k > 2 of type (5, 0) have non-degenerate cyclic 6-edge-cuts,
e.g. those depicted in Fig. 12.

Suppose a fullerene graph G has a non-degenerate cyclic 6-edge-cut C, separating
the graph into the components H; and H,. Then we can reconstruct the cut C from
the trivial ones with respect to H; and also with respect to H».

To reconstruct a cyclic 6-edge-cut, one can start with a trivial 5-edge-cut or a trivial
6-edge-cut.
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1 (0s) 1(0s) 1(0s)
(6,0) (6,0) (6,0)

Fig. 13 The cyclic 6-edge cuts reconstructed from a trivial cyclic 5-edge-cut (first part). These cuts lead
to nanotubes of type (6, 0)

If we start with a hexagon, the operation (O1) cannot be used. If the operation
(O2) was used, there would be a quadrangular face. So the operation (O3) has to be
used and a configuration containing six pentagons is obtained, see Fig. 11. In the next
steps only the operation (O3) can be used again, otherwise there are more than six
pentagons inside the cut. This way we get a cap of the nanotube of type (6, 0).

If we start with a pentagon, the operation (O1) has to be used exactly once, since the
operations (0O>) and (0O3) do not change the size of the edge-cut. If (O1) is not used
as a first operation, we first get some non-trivial cyclic 5-edge-cut, thus the fullerene
is the nanotube of type (5, 0). Starting with some nontrivial 5-edge-cut, after applying
the operation (O1), the operation (O3) can be used at most four times, see Fig. 12. If
there was only one layer of hexagons, all these cyclic 6-edge-cuts would be degenerate,
therefore there are at least two layers of hexagons in the nanotube.

If we start with a pentagon and first apply the operation (O1), as a second step we
have to use (0»). In the next steps we get the cyclic 6-edge-cuts depicted in Figs. 13
and 14. In some steps both (O3) and (O3) can be applied, in some steps only (O3) or
only (03) is applicable. Once there are six pentagons in the component and only one
of the operations can be used, we do not continue in listing more edge-cuts, because
the structure of the corresponding components is determined by the configuration of
the six pentagons. In all such cases we get the caps of the nanotubes of type (p1, p2)
with p; + p» = 6. (|

Corollary 5 There are five possible caps for the natotubes of type (6, 0). On the other
hand, the configurations of the six pentagons in the caps of the nanotubes of types
5, 1), (4,2), and (3, 3) are unique.

Proof In the proof of Theorem 4, we listed all possible configuration of at most
six pentagons in components of cyclic 6-edge-cuts. The configurations of the six
pentagons in the caps of the nanotube (6, 0) can be seen in Fig. 11, right, and in
Fig. 13, the second row. The configuration of the six pentagons for the nanotubes of
types (5, 1), (4, 2), and (3, 3) are determined uniquely, see Fig. 14. O
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Fig. 14 The cyclic 6-edge cuts reconstructed from a trivial cyclic 5-edge-cut (second part). These cuts lead
to the nanotubes of other types

Corollary 6 A fullerene graph has a non-trivial cyclic 6-edge-cut different from a
pentagon with a pending edge if and only if it contains at least one pair of adjacent
pentagons.

Proof The claim immediately follows from the proof of the Theorem 4, since all non-
trivial cyclic 6-edge-cuts different from a pentagon with a pending edge contain at
least one pair of adjacent pentagons. U
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